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EQUIVELAR POLYHEDRAL MANIFOLDS IN E 3 

BY 

P. McMULLEN, CH. SCHULZ AND J. M. WILLS 

ABSTRACT 

An equivelar polyhedral 2-manifold in the class d,/p.q is one embedded in E -~ in 
which every face is a convex p-gon and every vertex is q-valent. Various 
constructions for equivelar manifolds are described, and it is shown that, in 
certain classes J//p.q, there is a manifold of given genus g => 2 for all but finitely 
many g. 

w Introduction 

A polyhedral manifold, or, more  briefly (and only for the purposes  of this 

paper) ,  a polyhedron, is a closed topological  manifold  in some  eucl idean space,  

which is the under lying point-set  of a geomet r i c  2-complex  (in the sense of [13], 

w whose faces (that is, 2-cells) are convex polygons.  (We similarly refer  to the 

0- and 1-cells as vert ices and edges.)  Thus,  roughly speaking,  a po lyhedron  is a 

geomet r ic  model  of an abst ract  2-manifold,  made  up of convex  polygons.  

In this paper ,  we shall be concerned  pr imar i ly  with po lyhedra  in ord inary  

space E3; such po lyhedra  are necessari ly or ientable .  In accordance  with our  

intuitive feelings, we shall fur ther  require  that  ad jacent  faces (that is, faces which 

share a c o m m o n  edge)  not be cop lanar ;  f rom a theoret ical  v iewpoint ,  this 

r equ i r emen t  may  strictly be unnecessary.  

We  say a po lyhedron  M is equivelar if each of its faces has the same n u m b e r  p 

of  edges,  and if each of its vert ices belongs to the same  n u m b e r  q of edges.  The  

family of combina tor ia l  i somorph ism classes of such po lyhedra  we deno te  by 

d~p.q, and a par t icular  such manifold  we write as {p, q}, or  as {p, q;g} if we wish 

also to note  its cor responding  genus g. 

The  in t roduct ion of the new te rm equivelar  needs  some justification. As the 

definit ion implies, an equive lar  po lyhedron  M has local regular i ty  proper t ies .  In 

case M is a ( topological)  sphere ,  it is easy to see that  M must  be combina tor ia l ly  

regular ,  in that  the combina tor ia l  a u t o m o r p h i s m  group  of M is t ransi t ive on the 
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flags of M, which are the triples {F ~ F ' ,  F2}, where F' is an /-cell of M, with 

F ~ C F I C F 2. (Compare [14].) But for higher genus this is, in general, not true - -  

equivelarity is a weaker condition than (combinatorial) regularity. Certain of the 

polyhedra we discuss below will, in fact, be combinatorially regular, but we shall 

place no particular emphasis on this. Our notation {p, q ; g} is, of course, a simple 

modification of the Schl~ifli-Coxeter symbol for regular polyhedra (see [7]). 

Before we come to our results, we mention that there is a considerable 

literature on geometric realizations of 2-manifolds in E 3 o r  Ea; we single out [1; 

2; 3; 4; 12; 19] as being more particularly relevant to the present paper. There is 

also an extensive literature on regular polytopes and related topics; see, for 

example, [7; 8; 10; 17]. 

We also note the various infinite analogues of our equivelar polyhedra, which 

we might call equivelar apeirohedra; in an obvious extension of our notation, we 

can denote these by {p,q;oo}. There are the regular Petr ie-Coxeter  skew- 

polyhedra {4, 6; 0o}, {6,4; 0o} and {6, 6; 0o} ([6]), and other examples with regular 

faces due to Gott  [11], namely {3;8;0o}, {3, 10;0o}, {4,5;00} and {5,5;0o} (some of 

these actually violate our condition that adjacent faces not be coplanar); 

compare also [19]. {5, 5; 0o} and {6, 6; 0o} are noteworthy, in that they are the only 

equivelar manifolds {p, q} (finite or infinite) of which we are aware, with both 

p > 4 and q > 4. We have also found (by methods analogous to those described 

below) many other examples, but whether Theorem 1 or 2 generalizes to the case 
g =0o we do not know. However,  although the local appearance of these 

apeirohedra is like that of our (compact) equivelar polyhedra, their global 

behaviour is quite different; for example, they are usually invariant under a 

certain group of lattice translations. 

w Statement of results 

For equivelar polyhedra, very simple combinatorial conditions hold. Let 

M E ~p.q be a polyhedron of genus g, and denote by ~ = f~ (M) the number of its 

/-cells (i = 0, 1,2). Then we have 

q/o= 2f, =pf=. 

From this and Euler's equation 

f o - f , + f = = 2 - 2 g  
follows 

(1) 1 1 l = 2 . g - l = g - l = 2 . g - 1  
2 p q q  fo f~ P ]:2 
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Relation (1) leads to an easy classification. 

(a) If 1/p + 1/q >�89 then g = 0 and ~p,q consists of (the combinatorial 

isomorphism class of) the single regular convex polyhedron {p, q}; that is, the 

Platonic solids {3, 3}, {3, 4}, {3, 5}, {4, 3} and {5, 3}. 

(b) If 1/p + 1/q = �89 then g = 1 and ./,tp, q can consist of tori alone. The classes 

,///[3,6 and A/4.4 contain infinitely many such tori, but, of course, ~6.~ is empty, 

because a polyhedron of genus g => 1 must have some non-convex vertices, which 

is impossible if all vertices are 3-valent ([13], exercise 11.1.7). 

(c) If 1/p + 1/q < �89 then g => 2, and g increases with f,,, fl and/2.  Again, the 
classes .//p.3 (17 => 7) must be empty. 

From (1) it follows that only certain genera g can occur in a given class d/p.q. In 

19 classes, all but finitely many values of g are allowed by (1). For this to be 

possible, (2/p)(~- 1/p - 1/q) -~ and (2/q)(~- 1/p - 1/q) -~ must both be integers. 

We lisf in Table 1 these classes, with the smallest possible value of g; however, 

the easy computations which lead to this value (they involve counting edges and 

diagonals of faces) are omitted. 

3 
4 
5 
6 
8 

10 
12 

Table 1 

4 5 6 7 8 9 10 12 18 

3 5 
3 5 
5 14 

10 
32 

26 

2 3 4 5 8 20 
10 26 

32 

50 

In fact, Betke and Gritzmann [5] have shown that, if q => 5 is odd, then ://p.q is 

empty unless p < 2q; hence the entry {10,5} in Table 1 should be omitted. 

If g_->2, equivelar manifolds have the nice property that they have the 
minimal number of vertices, edges and faces among all polyhedra of genus g 

with at most p-gonal faces and at most q-valent vertices. This follows directly 

from (1) (using qfo >= 2fl, pf2-~ 2fl). This property was a starting point for our 

research, and we began with the investigation of some of the 19 classes 

mentioned above (especially those with small p and q). However, the relative 

difficulty of some of the constructions needed soon made clear that it was an 

interesting question as to which of the classes ./,tp.~ were infinite, or even 

non-empty. 

Further developments of the constructions we employed (such as inscribing 
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manifolds and intersecting octahedra, which we describe below) led to infinite 

numbers of infinite classes /dp.q. These wider constructions are discussed in 

another paper [15], one of whose results is: 

THEOREM 1. Each of the classes dd3.q (q >= 7), M,.q (q ~ 5) and ~/~p,4 (p ~ 5) is 
in]inite. 

In this paper, we shall largely concentrate on the problem of realizing all 

possible genera within given classes Mp.q. Our main results are: 

THEOREM 2. There exist the following equivelar polyhedra : 
(a) ~3,7;g} for g >_-2; 

(b) (3,S;g} for g_-> 4; 
(c) {4,5;g} and {5,4;g} for g =5 ,7  and g >9;  

(d) {3,9;g}, {4,6;g} and {6,4;g} for g =6,9,10 and g >-_ 12. 

In Theorem 2, we have listed all the classes ~p.q in which we have been able to 

find polyhedra {p, q;g} with all except possibly finitely many of the genera g 

which can occur. So, we have only mentioned 7 of the 19 classes of Table 1; in 

d/~.7 we have all possible manifolds, in d~3.~, one is missing, in dd3.~, 5 are missing, 

and in the remaining four classes, 4 are missing. It is probable, though, that for 

geometric (rather than combinatorial) reasons, some of these missing manifolds 

do not, in fact, exist. 

The constructions used to prove Theorem 1 give a fairly sparse set of genera. 

However, those used to prove Theorem 2 (see Lemmas 5, 8a, 9a, 14, 15, 16 and 
17) can be applied in other circumstances, and yield the following additional 

polyhedra (Lemmas 7, 8b and 9b): 

(e) {3, 12; g}, {4, 8; g} and {9, 4; g} ]'or g = 73 + 66n, n _-> 0. 

All these results are illustrated in Fig. 1. In this figure, the Platonic solids and 

plane tessalations (and related tori) are indicated by P resp. T, Coxeter's {6, 6; ~} 

and Gott's {5,5;~} by ~, the classes of Theorem 2 by solid discs, and the 

remaining classes of Theorem 1 by open circles. 

w Four-dimensional constructions 

If P is any 4-polytope, then a Schlegel diagram of P is obtained by projecting 
the faces of P radially from a point beyond one facet of P but beneath all the 

others into that facet. In particular, each 2-face of P is projected into a convex 

polygon, and incidences between 2-faces are preserved, so that in the Schlegel 
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  ooooooo 
Fig. 1. 

diagram is an isomorphic copy of the 2-skeleton of P (see [13] for more details). 

In other words: 

LEMMA I. If  a 2-manifold M is geometrically realizable in the 2-skeleton of 
some 4-polytope, then M is geometrically realizable in E 3. 

In what follows, we shall use this lemma without further comment. 

Our construction of suitable manifolds will depend upon certain modifications 

of 4-polytopes, in particular classes. But we begin by describing the modifica- 

tions in general terms. Here and below, we start with a 4-polytope P, whose 

facets are labelled F., and whose 2-faces are labelled F~ fq F / =  F~ = Fj, (we only 

use this notation when F~ and Fj are adjacent facets). 

The first modification, which we call method A, is the following. Within each 

facet F~ of P is inscribed a 3-polytope G,, such that 

(a) for each 2-face F~j of F~, G~i -- G, f3 F~j is a 2-face of G~ ; 

(b) = G , ,  ; 

(c) G~j C_ relint F,,. 

We now let Q = conv(U G~), so that Q is a 4-polytope, and each G; is a facet 

of Q. (Of course, Q will have other facets, but these do not concern us.) 

LEMMA 2. Let Q be as above, and let M consist of those 2-faces of O which are 
contained in exactly one facet Gi. Then M is an orientable 2-manifold. 

If we observe that two 2-faces of M belonging to different G,'s can only meet 

in the boundary of some 2-face Gij, then the lemma is obvious. 
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Before we describe particular applications, let us calculate the genus of M. For 

each i, G~ fq M consists of a sphere from which f2(F~) polygons have been 

removed. Since single circuits can be omitted or not in calculating the Euler 

characteristic, we obtain 

x(M) = x(o, n M )  

= ~ (2 - f2(F~)) 

= 2 ~ ( P ) - 2 ~ ( P ) ,  

the latter term arising since each 2-face of P belongs to two facets. In other 

words: 

LEMMA 3. Let M be obtained from the 4-polytope P by method A. Then 

g(M) = 1 + f z (P) -  f3(P). 

In particular, let P have facets all isomorphic to the regular 3-polytope {r, s} 

( =  {r, s ;0}). In this case, f2(F,) is the constant 

4s 
f2({r, s}) = 4 - (r - 2)(s - 2) 

(see [7]). We then conclude (using the second expression for x (M)  above, rather 

than the last): 

LEMMA 4. Let P be a 4-polytope, all of whose facets are isomorphic to the 
regular 3-polytope {r, s }, and let M be obtained from P by method A. Then 

g(M) = 1 + d,,f3(P), 
where 

d,, = r(s - 2 )  
4 - ( r - 2 ) ( s - 2 ) "  

In Table 2, we list the values of d,,. 

Table 2 

3 4 5 

1 3 9 
2 
5 
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After this general discussion, we now come to specific examples. 

Firstly, let P be a simplicial 4-polytope; that is, every facet of P is a 

tetrahedron, isomorphic to {3, 3}. In fact, of course, every facet of P is aflinely 

equivalent to {3, 3}. So, if we inscribe in our fixed regular tetrahedron S = {3, 3} a 

polyhedron T, such that 

(i) every symmetry of S is a symmetry of T; 

(ii) for each 2-face H o f  S, H n T i s a  2-face of T ; a n d  

(iii) H n T C relint H ;  

and in each facet of P take the appropriate atiine image of T (under the affinity 

carrying S into that facet), we see that we shall have satisfied the conditions 

(a)-(c) of method A. 

For our first example, we take T to be the archimedean truncated tetrahedron 

with its triangular faces lying in the faces of {3, 3}. Since the vertices of the 

resulting manifold M are all alike, and belong to four hexagons each, in view of 

Lemmas 2 and 4, we see that we have 

LEMMA 5. There is a {6,4;g} for each g = 6,9, 10 and  g >= 12. 

For the assertion about the genus, we refer to [13], figure 10.4.1, where it is 

shown that there are simplicial 4-polytopes with f3 facets, for f3 = 5, 8,9 and 

f i > l l .  

We now apply method A to the 4-polytopes whose facets are all isomorphic to 

the octahedron {3, 4}. In [16] is described the only construction of which we are 

aware that yields an infinite class of such 4-polytopes. Since we need a certain 

feature of this construction, we sketch a description of it here. Our basic building 

block is the regular 24-cell B = {3, 4, 3}; as its name suggests, B has 24 facets, 
which are all regular octahedra. 

Suppose that PI is a 4-polytope, all of whose facets are projectively equivalent 

to regular octahedra. Let F be any such facet, and p a point beyond F, but 

beneath every other facet of PI. We can perform a suitable projective mapping 

on B to obtain B~, with the properties that Bt _C conv(F U {p}), and one facet of 

Bt coincides with F. Then P2 = P~ U B~ is another 4-polytope of the type 

required. Initially, of course, we have P~ = B itself. 

We observe two things about this construction. Firstly, since f3(P2) = 

[3(P~) + 22, the only numbers of facets obtainable in this way are 24 + 22n, n > 0. 

Secondly, not only are all the facets of such polytopes projectively equivalent (to 

a regular octahedron), but the projective equivalences are consistent on common 

2-faces to adjacent octahedra. What we mean by this can be explained as follows. 

Let two adjacent such octahedra have common vertices a, b, c and remaining 
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vertices a ' ,  b', c' and a", b", c", with a ' ,  a" opposite a in their respective 

octahedra, and so on. Then there is a projectivity of E 4, actually unique, which 

interchanges the octahedra, leaving a, b, c fixed, and so interchanging a '  and a", 

and so on; this projectivity leaves every point of the triangle conv{a, b, c} fixed. 

For our application of method A, we inscribe in a fixed regular octahedron an 

archimedean truncated cube, whose triangular faces lie in the triangles of the 

octahedron. The truncated cube then has the same symmetries as the octahed- 

ron. Under the projective mappings taking this fixed octahedron into the 

octahedral facets of our 4-polytope P, these triangular faces of the truncated 

cubes then coincide in pairs, thus fulfilling the conditions (a)-(c) of method A. 

So, since four octagons meet at each vertex of the manifold M, we have: 

LEMMA 6. There is a {8, 4 ; g } [or each g = 73 + 66n, n >->_ O. 

The genus 73 + 66n arises from Lemma 4 and the remark above, since we have 

d3, = 3 (Table 2). 

We could also apply method A to the two classes of 4-polytopes whose facets 

are all (projectively regular) cubes or dodecahedra; however, we obtain no new 

classes of manifolds, and gaps in the numbers of possible genera. 

We now move on to method B. Again, we first describe the construction in 

general terms. Let P be a 4-polytope, with facets F~, as before. Within each facet 

E is inscribed a 3-polytope Gi, such that, for each 2-face F~j of F~, Gij = Gi A F,j 

is a 2-face of G,. (We impose no other conditions; notice that Gi = F~ is allowed.) 

For each i, let p iEre l in tGi ,  and let 0 < 3 . < 1 .  Let H~ = ( I - A ) p i + A G ,  

/-/~j = (1 - A)p, + AGo, and let Q = conv(U t-L). Among the facets of Q are the 

/-L, and facets of the form Kij ( = Kjl) = conv(Hij U/-/ji); for Hij and /-/jl lie in 

parallel 2-flats, and so Kij lies in a hyperplane, which clearly supports Q. Finally, 

our manifold M is formed of those 2-faces of Q which belong to exactly one 

facet Hi or Kij. 

We first observe, as far as the genus of M is concerned: 

LEMMA 7. L e m m a s  3 and 4 hold, with method B instead of  method A .  

We first apply method B in the cases where the facets of P are all isomorphic 

to the regular 3-polytope {r, s}, and the Gi are just the facets F~. The only 2-faces 

of M are then the quadrilateral faces of the prisms Kij, and these meet 2s at a 

vertex. In particular, with {r, s} = {3, 3} and {3,4}, we obtain: 

LEMMA 8. There are 

(a) {4, 6; g} for g = 6, 9, 10 and g > 12; 

(b) {4,8;g} for g = 73+66n,  n _->0. 
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Finally, we modify further these manifolds. Each quadrilateral face of the 

prisms K0 can be split into two triangles, so that three of these triangles meet at 

each vertex of g,j (see Fig. 2). 

Fig. 2. 

This face splitting turns each prism K~j into an antiprism on the same base; 

furthermore, the face splitting can be achieved geometrically by moving the 

vertices of M into general position. Thus we have: 

LEMMA 9. There are 

(a) {3, 9; g} for g = 6, 9, 10 and g >-_ 12; 

(b) {3, 12; g} for g = 73 + 66n, n => 0. 

Let us conclude this section with some remarks. We could also (as with 

method A) apply method B to those 4-polytopes with cubical or dodecahedral 

facets, and also to cases with G~'s inscribed in the F~ 's, with Gi ~ F~. Further, we 

could modify existing manifolds by face splittings. However,  none of these 

applications has led us to new classes of manifolds. Indeed, the only ones of any 
interest are the following. 

Firstly, inside each tetrahedron of a simplicial 4-polytope inscribe an icosahed- 
ron, and apply method B. The K~j are then triangular antiprisms (octahedra), and 

the resulting manifold is a {3,7;g}, with g = 6,9, 10 and g => 12. However,  the 

construction described in Lemma 10 achieves every possible genus. Secondly, we 

can split each hexagonal face of {6, 4; g} into four triangles, as in Fig. 3a, so as to 

turn each truncated tetrahedron used in the construction into an icosahedron 

(Fig. 3b). There results a {3,8;g}, with the same range of g just mentioned. 

(a) (b) 

Fig. 3. 
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We end this section with some observations. If we apply method B with each 

Gi = F~ to the dual P* of a given 4-polytope P, we actually obtain an isomorphic 

polyhedron M. In case P (and P*) is regular, the process of obtaining the new 

4-polytope from P was called by Mrs. Stott expansion (see [6]). 

It is easily verified that the polyhedra {4,6;g} and {6,4;g} obtained by 

methods A and B are actually (combinatorial) dual, as are the pairs {4, 8; g} and 

{8,4;g}. 

It is clear from what we have done here that, if we could find 4-potytopes 

whose facets were all isomorphic to the icosahedron {3,5}, then we could 

construct polyhedra {10, 4; g} (at least if the facets were projectively equivalent 

to the regular icosahedron), {4, 10; g} and {3, 15; g}, independently of Theorem 

1. However, there are good reasons for supposing that such 4-polytopes do not 

exist; in any event, it is known that the facets of such a polytope could not all be 

projectively regular (see [16]). 

w The method of inscribed manifolds 

Our next results are derived from the following constructions, which we first 

describe combinatorially. Let N be a polyhedral 2-manifold, and FI , . . ' ,Fk  

disjoint faces of N (F~ AFj = 0  if i ~ j ) .  Let N'  be isomorphic to N, with 

corresponding faces F[ , . . . ,F~.  For method C (as we shall call it) we delete the 

pairs of faces F~ and F~, and join their corresponding pairs of edges by 

quadrangles. (So, we have tubular elements, much as in method B.) Thus, at 
each vertex of a face F~, Fj is replaced by two quadrangles, and similarly for F~. 

For method D, we divide each of these quadrangles into two triangles, keeping 

the same orientation, as in Fig. 2 above. Thus, at each vertex of Fj, Fj is replaced 

by three triangles. 

LEM~A 10. If  methods C or D are applied to the faces FI, . . ., Fk of N, then the 

resulting manifold M has 

fo(M) = 2f0(N), g (M) = 2g(N)+  k - 1. 

In our applications, the faces FI,. �9 Fk will also cover the vertices of N. Two 

particular cases are of interest here. (In stating the lemma, for simplicity we 

assume geometric realizability.) 

LEMMA 11. Let the faces F~,. �9 Fk cover the vertices of N, and suppose all the 

vertices of N to be q-valent. 

(a) If  all faces of N, except possibly F~,. . . ,  Fk, are quadrangles, and we apply 

method C to obtain M, then M ~ .~4.q+~. 
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(b) If all faces of N, except possibly F1,"., Fk, are triangles, and we apply 
method D to obtain M, then M ~ d~3.q§ 

If N is the boundary (complex) of a convex 3-polytope P, the geometric 

realization of M is easy. For, let the origin 0 of coordinates be an interior point 

of P, and let N'  = AN, where 0 < A < 1. Method C now works geometrically. 

(Alternatively, observe that M is a subcomplex of the 2-skeleton of the prism 

over P, and apply Lemma 1. Compare here [18].) For method D, in case all the 

resulting faces are triangles, we just move the vertices of M into general 

position, so that the quadrangles split into triangles geometrically. 

In general, however, if N is an arbitrary polyhedron in E 3, we must take our 

isomorphic copy N'  in one of the two (open) components of E3\ N. That N'  can 

be suitably so inscribed must then be verified directly. 

Before coming to our specific applications of these methods, it is helpful to 

describe certain modifications of (convex) 3-polytopes which lead to new 

3-polytopes. 

Let P be a 3-polytope. What we shall call here the edge polytope E(P) of P is 

the 3-polytope with the following facial structure. The vertices of E(P), which 

are all 4-valent, correspond to the edges of P, and two vertices of E(P) are 

joined by an edge if the corresponding edges of P meet in a common vertex, and 

belong to a common face. The faces of E(P) are of two kinds: to an r~-gonal face 

of P corresponds an ri-gonal face of E(P), and to an sj-valent vertex of P 

corresponds an sj-gonal face of E(P). The two kinds of face of E(P) alternate 

around each vertex. The existence of E(P) as a 3-polytope is guaranteed by 
Steinitz's theorem ([13], 13.1.1). 

Finally, we note that, if P* is a polytope dual to P, then E(P*) is isomorphic to 

E(P), with the r61es of the two kinds of face interchanged. We have fo(E(P)) = 
fl(P), ft(E(P))= 2fl(P) and f2(E(P))= fo(P) + f2(P). 

We shall write E2(p) = E(E(P)), which we call the second edge polytope of P, 

and so on. 
We obtain the snub polytope S(P) of P by further modifying E2(p). The faces 

of E2(p) are of three kinds: the first correspond to the faces of P, the second 
correspond to the vertices of P, and the third, which are rectangles, correspond 

to the edges of P. In S(P), each of these latter quadrangles is split into two 

triangles by a new edge; the splitting is done coherently (in one of two ways), so 

that the vertices of S(P) are all 5-valent. Again, Steinitz's theorem guarantees 

the existence of S(P) as a 3-polytope. 

In the next lemma, we summarize some numerical facts, for subsequent 

reference. 
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LEMMA 12. Let P be a 3-polytope. Then: 

(a) fo(E2(p)) = 2fl(P), fI(EE(p)) -- 4f~(P), f2(E2(P)) = fo(P) + f~(P) + f2(P); 

(b) fo(S(P)) = 2f~(P), f~(S(P)) = 5f~(P), f2(S(P)) = fo(P) + 2fl(P) + 2f2(P). 

In Fig. 4, we illustrate these various modifications, giving the Schlegel diagram 

of E2(P) and S(P), where P is the prism over the triangle. 

As an additional example to that of Fig. 4, if P is a tetrahedron, then E(P) is 

an octahedron, E2(P) is a cuboctahedron, and S(P) is an icosahedron. 

We observe that both E2(P) and S(P) have families of disjoint faces which 

cover the vertices, namely those of the first (or second) kind. 

/ 

/ /  / 

Fig. 4. 

LEMMA 13. If we apply methods C or D to the boundary complex of E2(P) or 
S(P), using the faces of the first kind, then the resulting manifold M has 

fo(M) = 4f1(P), g(M) = fo (e ) -  1. 

We now come to our applications. 

LEMMA 14. There is a {3,7;g} for each g >->_2. 

The case g = 2 is not covered by our general methods, and so must be treated 
separately. 

So, first suppose that g => 3. Let P be a simple 3-polytope with g + 1 faces (the 

tetrahedron for g = 3, and the prism over the (g - 1)-gon for g => 4 will do), and 

apply method D to S(P), using the faces of S(P) of the first kind. Then the 
resulting polyhedron M is in ~3,7 (by Lemma ll(b)), and, by Lemma 13, 

g(M) = g. (As expected, fo(M) = 12(g - 1).) 
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For g = 2, let N be Czaszar's torus, which is a {3, 6; 1} with fo(N) = 7. Thus 

every two vertices of N are joined by an edge (fl(N) = 21). (For further details, 

see [9].) Let v be a vertex of N which is also a vertex of conv N. Let the plane H 

support conv N in v alone, and perform a projectivity H of E 3 taking H to 

infinity. Then II(N) has six parallel infinite edges. Let J be a plane cutting each 

of these edges (in an interior point) and perpendicular to them; thus the 

six (finite) vertices of II(N) lie to one side of J, say in the interior of the 

closed half-space J~. Let qb denote reflexion in J, and write M~= 

(II(N) fq J+) U ~(II(N) 71J+). Then M~ is a closed polyhedral 2-manifold with 12 

vertices, each 6-valent. M~ has 6 quadrangular faces, corresponding to the 6 

infinite faces of II(N), which form a tube. Let M be obtained from M1 by 

coherent splitting of these quadrangles into triangles, again as in Fig. 2, and 

moving the vertices into general position. Then M E~3.7, and g ( M ) =  2, as 

required. 

LEMMA 15. Thereare {4,5;g}forg=5,7 andg>9. 

The case g = 5 is again somewhat different, so we deal with it later. 

For g = 7 and g > 9, let P be a 3-polytope with g - 1 4-valent vertices. In fact, 

we must have P = E(Q), for some 3-polytope Q, and Q can have only these 

numbers of edges. We now apply method C to E2(P), using the faces of E2(P) of 

the first kind. Using Lemma ll(a),  we see that the resulting manifold M is in 

d~4.5, and since [o(M)= 8 ( g -  1), we have g(M)=g, as required. 

For g =5 ,  let N be a torus {4,4;1} with 16 vertices, and let N '  be an 

isomorphic torus inscribed in N, so that corresponding edges are parallel. For 

example, let N have vertices ( _ 4, ___ 4, +-- 4) and ( --- 1, - 1, _ 1), and let N'  have 

vertices (-+ 3, --+ 3, - 2) and ( -  2, _ 2, +-- 1). N has four disjoint faces covering its 

vertices, for example those with normal vector (1,0, 0). We now apply method C 

using these faces, and the corresponding parallel faces of N'. By Lemma ll(a),  

the resulting polyhedron M is in ~,.5, and fo(M)= 32, so that g(M)= 5, as 

required. 

We may observe that analogous constructions yield all odd g => 5. 

LEMMA 16. There are {3, 8; g} for g >= 4. 

Let N be a torus {3,6;1} with 3 ( g - l )  vertices, obtained by making the 

identifications shown in Fig. 5. The horizontal edges are identified in the natural 

way, and to identify the vertical edges we take remainders modulo 3. We can 

realize N geometrically as follows. Let T be an equilateral triangle inscribed in 

the unit circle in the plane y = 0 centred at (10, 0, 0). Write To = T, and let Tk 
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Fig. 5. 

(k = 1 , . . . ,  n -  1) be obtained from T by rotating its plane about the z-axis 

through an angle 2kzr/n, and, if n ~ 0 (modulo 3), additionally rotating T about 

its centre through an angle 2kzr/3n. Then we can take the vertices of N to be 

those of the Tk's. (Initially, we have coplanar adjacent faces, but we can deal 

with this at the end.) We similarly define N', taking T ' =  2 T - ( 1 0 , 0 , 0 ) ,  the 

homothetic copy of T of twice the size with the same centre. We now apply 

method D with the triangles of N hatched in Fig. 5, and move the vertices into 

general position if necessary. There results a polyhedron M ~ d~3.8 with 6(g - 1) 

vertices, so that g ( M ) = g  as required. 

w The method of intersecting octahedra 

The following constructions are related to those for {6,4;g} and {8,4;g}. 

However, whereas those could be described by a classical 4-dimensional 

technique, here we need a specifically 3-dimensional construction. 

LEMMA 17. There are {5, 4; g} J:or g = 5, 7 and g >= 9. 

As with the dual case {4, 5; g}, the case g = 5 needs special treatment, which 

we give later. 

So, suppose first that g = 7 or g => 9. As in the proof of Lemma 15, let P be a 

3-polytope with g - 1  vertices, all 4-valent. We may suppose 0 ~ i n t P .  Let 

�89 K <3, 0 <  )~ < 1 </z.  Let v be any vertex of P, and let the four adjacent 

vertices be, in cyclic order around v, vl," �9 ", v4. Let O, be the (not necessarily 

convex) octahedron with pairs of opposite vertices )iv, /~v; ( 1 - K ) v  + Kvi 

(i = 1, 3; i = 2, 4}. Let M be the boundary of U{Qo I v E vert P}. Then M E 

~ts.,, and M has 8(g - 1) faces, so g ( M )  = g as required. 

The only assertion that needs verifying is M E ~5.4. The condition K < 

ensures that three octahedra Ou, Oo and Ow cannot have a non-empty 

intersection, while the condition K > �89 and the choice of the vertices of the Ov (so 

that appropriate sets of edges are coplanar) ensures that, if v and w are adjacent 

vertices, then bd Qv I"1 bd Qw is a quadrangle. Thus each original triangle of Oo is 

truncated at two vertices, and so becomes a pentagon. Clearly now, four such 

pentagons meet at each vertex of M. 
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Now let g = 5. The manifold M we construct can also be regarded as an 

intersection of four suitable octahedra, but it is perhaps easier to describe it 

directly. M is symmetric by reflexion in each of the three coordinate planes, so it 

is enough to describe its four faces F 1 , "  ", F4 in the non-negative orthant. The 

four F~ meet in a common vertex V = (2, 2, 3), and F~ A E§ = VW~ (i = i + 4), 

where 

WI = (0, 3, 2), W2 = (4, 0, 2), W3 = (0, 5, 2), W, = (4, 0, 3). 

Finally, F~ has a vertex X, on the x-axis, and Y~ on the y-axis, where 

X1 = (1, 0, 0), X2 = (8/3, 0, 0), X3 = (24/5, 0, 0), X4 = (7, 0, 0), 

Y1 = (0, l ,  0), Y2 = (0, 2, 0), I:3 = (0, 6, 0), Y, = (0, 7, 0). 

We illustrate this in Fig. 6. We have M E Ats,4, since, by construction, all vertices 

are 4-valent, and f2(M)= 32, whence follows g(M)= 5, as required. 

y, 

w, 

o 

\ \  

Fig. 6. 

Note added in proof. A. Wanka (Siegen) recently constructed the equivelar 

polyhedra {4,5;g}, g = 4 , 6 , 8  and {5,4;g}, g =6 ,8 .  
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